
-::)Z-:Jh/

ELIMINATING FLOW SEPARATION AND REDUCING VISCOUS DRAG

THROUGH BOUNDARY LAYER ANALYSIS AND MANIPULATION

Matthew D. Oser (LARSS Student)

Richard L. Campbell (Mentor)

Research and Technology Group

Aerodynamics Division

Transonic/Supersonic Aerodynamics Branch

555

ABSTRACT

As both computers and flow-analyzing equations have increased in sophistication,

computational fluid dynamics (CFD) has evolved into a fixture for advanced aircraft design.

While CFD codes have improved in accuracy and efficiency, their ability to encompass viscous

effects is lacking in certain areas. For example, current CFD codes cannot accurately predict or

correct for the increased drag due to these viscous effects at some flow conditions. However, by

analyzing an airfoirs turbulent boundary layer, one can predict not only flow separation via the

shape factor parameter, but also viscous drag via the momentum thickness. Various codes have

been written which can calculate turbulent boundary layer parameters. The goal of my research is

to develop procedures for modifying an airfoil (via its local pressure distribution) to eliminate

boundary layer separation and/or to reduce viscous drag. The modifications to the local pressure

distribution necessary to achieve these objectives will be determined using a direct-iterative

method installed into a turbulent boundary layer analyzer. Furthermore, the modifications should

preserve the basic characteristics of the original airfoil.

556

ELIMINATING FLOW SEPARATIONAND REDUCINGVISCOUSDRAG
THROUGHBOUNDARY LAYER ANALYSIS AND MANIPULATION

As both computers and flow-analyzing equationshave increased in sophistication,
computationalfluid dynamics(CFD) has evolved into a fixture for advancedaircraft design.
While CFD codeshaveimprovedin accuracyandefficiency,their ability to encompassviscous
effectsarelackingin certainareas.For example,currentCFDcodescannotaccuratelypredict or
correctfor the increaseddragdueto theseviscouseffectsat someflow conditions. However,by
analyzinganairfoil's turbulentboundarylayer,one canpredict not only flow separationvia the
shapefactor parameter,but alsoviscousdragvia the momentumthickness. Variouscodeshave
beenwritten which can calculateturbulent boundarylayer parameters. My researchproject
involveddevelopinga procedurefor modifyingan airfoil (via its local pressuredistribution) to
eliminateboundarylayerseparationand/orto reduceviscousdrag. Themodificationto the local
pressuredistributionnecessaryto achievethesegoalswouldbedeterminedusingadirect-iterative
method.

My researchproject required a turbulentboundarylayer analyzer. I selecteda code,
writtenby Gary Warren,whichutilizesGreen'sdirect lag-entrainmentmethod. This code solves
for boundarylayer parameters,suchas displacementthickness,momentumthickness(O), and
shapefactor(H), basedon inputtedfreestreamconditions,localpressure(Cp)distribution,andan
initial valueof O. Unfortunately this code was written in FORTRAN, while I had learned C. I

therefore borrowed a FORTRAN manual and spent my first few nights learning FORTRAN.

My first task was to edit the code to input data from a more convenient data file. The

code originally input data from an archaic namelist that was time-consuming to modify. With this

task accomplished, I needed to run some test cases in order to verify the code's accuracy. I found

an AGARD report that contained experimental boundary layer data for various airfoil

configurations. I selected three test cases: The first case exhibited completely attached flow, the

second case exhibited flow that neared separation, and the third case produced separated flow.

The code yielded very accurate theoretical data for the first two cases. One drawback of the

direct lag-entrainment method is its inability to produce accurate boundary layer data for

separated flow cases. However, my code remained fairly accurate for even the third test case.

Confident in the boundary layer af_alyzer, I was ready to proceed with my research.

In order to examine the effects alterations to the Cp distribution would have on the H

distribution, I needed an easy way to qualitatively compare my calculated data. The original code

output data into a large table. It was difficult, and very time-consuming, to compare various

tables from different test cases. I therefore modified my code to graph both Cp and a user

specified boundary layer parameter versus x/c location. As a result, I could quickly compare

multiple sets of data. I also required a convenient method for modifying the inputted Cp

distributions. I chose to approximate each Cp distribution with a system of linear segments joined

together at "control points." (Figure 1) I altered the code to present the user the option of

inputting a Cp distribution via these control point coordinates. ! also created an option which

allows the user to interactively move one of these control points using a mouse.

557

After these modifications, I was ready to contrast H distributions produced by various Cp

distributions. I chose a base-line Cp distribution composed of five linear segments as defined by

six control points (Figure 1). I created dozens of test cases by varying the height and/or slope of

these segments. After observing the resulting changes in the H distributions, I developed some

fundamental conclusions. I observed that a change in the Cp distribution has no effect on the H

distribution (or any other boundary layer parameters' distributions) upstream of the change. I also

concluded that the sharp increase in H near the shock is determined by the pressure gradient

across the shock. Furthermore, I observed that in front of the shock, a decrease in Cp causes an

increase in H. Behind the shock, however, a decrease in Cp typically results in a decrease in H.

Armed with a qualitative understanding of the relationships between Cp and H, I sought to

develop a procedure for modifying an existing Ca distribution to return a desired H distribution.

Since H is often used as a separation criterion, I would then be able to construct a Cv distribution

with fully attached flow. I first looked to develop a routine for reducing the rise in H due to the

shock. By raising the Cp value of control point three (Cp(3)), I could decrease the strength of the

shock, and thus diminish the rise in H due to shock. Unfortunately, adjusting only control point

three would change the area under the Cp distribution, and thus alter the lift coefficient.

However, by simultaneously lowering the Cp value of control point two as I raised the Cp value of

control point three, I would decrease the shock strength while conserving the area under the Cp

curve. Thus the rise in H due to the shock would be lowered without upsetting the lift coefficient.

In order to install this procedure into my computer code, I needed an expression to quantitatively
predict this increase in Cp(3) requisite for a desired decrease in the maximum value of H within

the shock region. After trial-and-error, I selected an expression of the form:

ACp(3) = A*H*AHma x + B*H*(AHmax)2

Since this expression is an approximation, I had to make the procedure iterative within the code.

Despite being iterative, the procedure requires little CPU time to achieve a high degree of

accuracy. (Figure 2.) It is also worthy to note that this shock-adjusting procedure can be used to

increase a shock's strength if desired.

In order to remove any flow separation that occurred after the shock region, I planned to

"locally" adjust the Cr, value at each point where H exceeded some specified Hseparate. This

technique differs from the previous "shock-reducing" method where Cp values upstream of the

separation point were modified. Early attempts to predict a local change in Cp that would yield a

desired change in H were unsuccessful. Unfortunately, multiple Cp values exist which produce a

single desired value of H. My code needed to predict a change in Cp that would not only produce

a desired H value, but also preserve the characteristics of the O distribution. (While there are

various Cp values that will produce a desired H, there exists a unique Cp value that will produce

both the desired H and 0 values). With continued investigation and trial-and-error, I developed
an expression of the torm:

ACp = A*(AH/H) + B*(AH2/H)

which accomplished this with reasonable accuracy. (Figure 3.) With procedures for both reducing

H within and after the shock region, my code could now redesign an airfoil to avoid separation at

558

specific free stream conditions. I now aspired to devise a process for reducing an airfoil's viscous

drag.

While H predicts flow separation, the value of O at the trailing edge (Ot.e.) of the airfoil

predicts viscous drag. In order to minimize viscous drag, one must minimize Ot.e. (viscous drag

also depends on Ht.e., but lowering Ot.e. has the greatest influence on the reduction of viscous

drag). Thus, I required a procedure for redesigning a Ca distribution around a desired value of

Ot.e.. At the same time, I wanted the basic characteristics of my Ce distributions to remain fixed.

In order to accomplish this, I first scaled the existing O distribution so that O at the trailing edge

of the airfoil would equal a user specified target value. Thus, the new target O distribution would

maintain the same characteristics of the original O distribution. I now only needed a procedure

for modifying an existing Ce distribution to produce this desired target O distribution. I once

again chose to use a direct iterative method. After much experimentation, I developed an

expression of the form:

ACp = A*(AO/O) + B*(AO2/O)

This expression produced an accurate estimation of the required change in Cv needed to produce

a desired change in O. After installing this iterative procedure into my code and running some

test cases, I was pleased with the results. Designing to a target O distribution is much more

efficient than designing to a target H distribution: it requires fewer iterations (and therefore less

CPU time) to achieve a desired tolerance. Figure 4 shows an example where I have used this new

procedure to reduce the drag of an airfoil by nearly five counts.

With separate methods for redesigning a Cr, distribution to produce both desired H and O

distributions, I now sought to create a procedure for redesigning an airfoil to simultaneously

produce both target boundary layer distributions. Unfortunately, it is sometimes impossible to

design an airfoil to meet two stringent criteria. Therefore, one of the criteria must take

precedence over the other. Then, if a Cp cannot be modified to produce both boundary layer

design criteria at a given x/c location, the code will insure that at least the primary design

constraint is met. With few alterations to my existing code, I installed this procedure. Basically,

the code modifies the existing Cr, distribution to remove any secondary criterion violations. Once

this has been accomplished, the code checks for primary criterion violations. If the code

encounters any such violations, it readjusts the Ce distribution accordingly.

One drawback of these various methods for reducing separation and viscous drag is the

tendency for the value of Cp at the trailing edge (Cp t.e.) to become increasing smaller. Typically,

Cp t.e. for a given airfoil is fixed around a value of 0.1. I needed a procedure for redesigning an

airfoil, with the added constraint of keeping Cp t.e. constant. Unfortunately, this added constraint

created the possibility for even more cases with "no solutions." However, I felt this constraint

was too important to over-look. Therefore, I devised a lairly simple subroutine that uses

triangulation to adjust the Cp distribution after the shock until this trailing edge constraint is met.

(During this stage of my research, I determined that a linear Cp distribution after the shock results

in the lowest value of Ot.e) I even included the option of maintaining constant lift and moment

coefficient by adding or subtracting a parabolic increment to the Cp distribution as needed. Figure

5 illustrates an example of this lift coefficient conserving technique. Readjusting the Cp

559

distribution to constrain Cp t.e. unfortunately can create more boundary layer parameter violations

(H and/or O may once again exceed their specified limits). One would then have to redesign the

Cp distribution to eliminate the new violation, which in turn could cause another Cp t.e. violation.

Continuing this iterative procedure will cause eventual convergence on the solution, assuming one
exists.

My completed code meets all of the original project goals. It can eliminate flow

separation about an airfoil, as well as reduce an airfoil's viscous drag. Despite utilizing direct-

iterative procedures, the code remains efficient. However, installation of a proven boundary layer

analyzer that uses the indirect lag-entrainment method would eliminate the need for most of the

iterations. Unfortunately, no such analyzer was available during the course of my research.

Regardless, the UNIX based workstations I used for my research provided more than enough

processor speed to run my program swiftly.

560

It ,_,-LL,, LL_,J.L,_,,
o .I .2 .3

L,, ,-L*--LLL,_I.., L,_,J_LLJ , I., , LI
s .e .7 .o ._ ,.o

[lj

-2

-!

S

-@

L, ,_,_L__LL,JJ_L,_,_LL L, ,-L,J-LLLLJ_LJ_LI_LLI_, I.,., ,.I
o .I .2 .3 .'t .5 .8 .7 .o .5 t .o

X/l:

APPENDIX

Figure 1.

I

h

0

l,, ,_Lu_,_Li , ,_l_El., I.,, ,_L, '-* L,±,_L,J_LL,J_, L,, ,.I
o ., 2 ._ .,, s .o .', .o _ ,0

X/[

(In £he remaining

figures, the dashed-

lines represent the

orlglna_ distributions,

wh_le the solid-lines

represent the adJustbd

distributions.)

Figure 2.

561

-I

LI_.tJ._L_L.LI_L LLI. L i_.t_1 L,..l_l L LLJ-LLL.LLLLLLLLLLL_Lt.I
o ., ._ .._ .,, .s ., ._ ., ._ ,.o

X/C

[J_i.LLLJJ_L.u_J_LLu_.L,_,__LJJJ_Lt I ! I, I I LLu_LuJJ
0 .! ,9' .3 .'! -S .g .7 .II .9 I .0

X/C

Figure 3.

k IIJo-i

h

/"

_LL-_LL, -I u.. L L'- LLLLLJ_LLLLL.LLLLLL,.I
0 .t ._ ._ .'I .$.11 .? .B .9 1.0

X/C

' T

.... " X

t'J

ii_ |j_LLLJ._LILI. Lj.L|.I.tLI.LI_LLL.LLu_LLLLLLJ_LJ_LLu_I

o .I ._ .3 .1 .s .6 .7 .11 .$ 1,0
X/l:

Figure 4.

562

-I

0

I tt_lll
0 .I .2

\

r{gure 5.

563

